Compact fixed output

IP20 **SELV** ♥ ♥ ♥ FROHS

TALEX(driver LCI 100 W 1400/1750/2100 mA TEC C

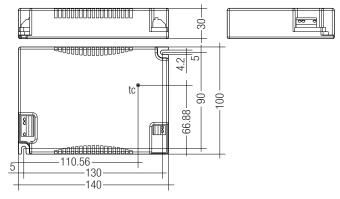
TEC series

Product description

- Fixed output built-in LED Driver
- · Constant current LED Driver
- Output current 1,400, 1,750 or 2,100 mA
- Max. output power 100 W
- Nominal life-time up to 50,000 h
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- 5-year guarantee

Properties

- · Casing: polycarbonat, white
- · Brush-coated for higher protection against humidity
- Type of protection IP20


Functions

- Overtemperature protection
- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage up to 2 kV
- Surge protection voltage up to 2 kV (L to N)
- Surge protection voltage up to 4 kV (L/N to earth)

Technical data

Rated supply voltage	220 – 240 V
AC voltage range	198 – 264 V
Current at 50 Hz 230 V	0.47 A
Mains frequency	50 / 60 Hz
Overvoltage protection	300 V AC, 1 h
Max. input power	115 W
Output power range	50 – 100 W
THD (at 230 V, 50 Hz, full load)	< 10 %
THD (at 230 V, 50 Hz, min. load)	< 15 %
Output current tolerance	± 7.5 %
Typ. current ripple (at 230 V, 50 Hz, full load)	< 3 %
Turn on time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Turn off time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Hold on time at power failure (output)	0 s
Ambient temperature ta	-25 +60 °C
Ambient temperature ta (at life-time 50,000 h)	60 °C
Storage temperature ts	-40 +80 °C
Dimensions L x W x H	140 x 100 x 30 mm

Ordering data

Туре	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LCI 100W 1400mA TEC C	87500267	10 pc(s).	240 pc(s).	1,200 pc(s).	0.274 kg
LCI 100W 1750mA TEC C	87500268	10 pc(s).	240 pc(s).	1,200 pc(s).	0.276 kg
LCI 100W 2100mA TEC C	87500269	10 pc(s).	240 pc(s).	1,200 pc(s).	0.276 kg

Standards, page 3

Wiring diagrams and installation examples, page 4

Compact fixed output

Specific technical data

Туре	Output	Typ. power consumption	Power factor	Efficiency	Power factor	Efficiency	Min. forward	Max. forward	Max. output	Max. peak output	Max. casing
	current	(at 230 V, 50 Hz, full load)	at full load®	at full load®	at min. load®	at min. load $^{\tiny \scriptsize \textcircled{\tiny 1}}$	voltage [®]	voltage [®]	voltage	current [®]	temperature tc
LCI 100W 1400mA TEC C	1,400 mA	106.0 W	0.98	94.0 %	0.93	90 %	35.5 V	71.5 V	76.5 V	2,100 mA	80 °C
LCI 100W 1750mA TEC C	1,750 mA	106.0 W	0.99	93.5 %	0.95	90 %	28.5 V	58.0 V	62.0 V	2,625 mA	80 °C
LCI 100W 2100mA TEC C	2,100 mA	106.5 W	0.99	93.5 %	0.94	89 %	23.5 V	47.5 V	50.5 V	3,150 mA	85 °C

¹ Test result at 230 V, 50 Hz.

Standards

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

Overload protection

If the output voltage range is exceeded the LED Driver reduces the LED output current. After elimination of the overload the nominal operation is restored automatically.

Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded, the unit shuts down itself and then turns on when it cools down. After the elimination of over temperature fault, the nominal operation is restored automatically. The temperature protection is activated typically at 7 $^{\circ}\text{C}$ above to max.

Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver will latch-up. The LED Driver will recover itself when the short-circuit fault is removed and the AC is recycled (turn off the AC for longer than 0.5 s and then turn on).

No-load operation

The LED Driver works in constant voltage mode. In no-load operation the output voltage will not exceed the specified max. output voltage (no.load voltage, refer to page 1).

Expected life-time					
Туре	ta	40°C	50°C	60°C	65°C
LCI 100W 1400mA TEC C	tc	60°C	70°C	80 °C	Х
	Life-time	100,000 h	80,000 h	50,000 h	Х
LCI 100W 1750mA TEC C	tc	60°C	70°C	80 °C	Х
LOI TOOW 1730IIIA TEO C	Life-time	100,000 h	80,000 h	50,000 h	Х
LCI 100W 2100mA TEC C	tc	65 °C	75°C	85 °C	Х
LOI TOUW ZIDUIIIA TEU U	Life-time	100,000 h	80,000 h	50,000 h	Х

The LED Drivers are designed for a life-time stated above under reference conditions and with a failure probability of less than 10 %.

Maximum loading of automatic circuit breakers

maximum idading of automatic c	ii cuit bi cakci s									
Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush	n current
Installation Ø	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	Imax	Time
LCI 100W 1400mA TEC C	8	10	14	15	4	5	7	8	57 A	230 µs
LCI 100W 1750mA TEC C	8	10	14	15	4	5	7	8	57 A	230 μs
LCI 100W 2100mA TEC C	8	10	14	15	4	5	7	8	57 A	230 us

Harmonic distortion in the mains supply (at 230 V/50 Hz and full load) in %

mannonio alotortion in the manie eappi	, (at 200 1 / 00 112 and	a ran road) iii	, ,			
	THD	3.	5.	7.	9.	11.
LCI 100W 1400mA TEC C	10	7	3	2	2	2
LCI 100W 1750mA TEC C	10	5	3	1	1	1
LCI 100W 2100mA TEC C	10	7	3	2	2	1

red automatically.

Storage temperature: -40 $^{\circ}\text{C}$ up to max. +80 $^{\circ}\text{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

Glow-wire test

Storage conditions

Humidity:

according to EN 61347-1 with increased temperature of 960 °C passed.

5 % up to max. 95 %,

(max. 56 days/year at 95 %)

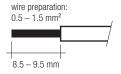
not condensed

Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 500 V surge voltage.

Creepage distances and clearances must be maintained.

Replace LED module

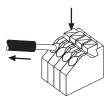

- 1. Mains off
- 2. Remove LED module
- 3. Wait for 10 seconds
- 4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

Wiring type and cross section

The wiring can be stranded wires with ferrules or rigid wires with a cross section of $0.5-1.5\ \text{mm}^2$.

Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals (WAGO 250).


Wiring instructions

The secondary leads should be separated from the mains connections and wiring for good EMC performance.

Maximum lead length on secondary side is 2 m. For a good EMC performance keep the the LED wiring as short as possible.

Release of the wiring

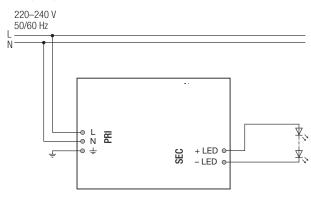
Press down the "push button" and remove the cable from front.

Mounting of device

Max. torque for fixing: 0.5 Nm/M4

Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally 5 – 10 cm distance)
- Max. length of output and I sel wires is 2 m.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- Through wiring of mains is connecting additional LED Driver only.
 Max. permanent current of 6 A may not be exceeded.
- The wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).


Additional information

Additional technical information at <u>www.tridonic.com</u> → Technical Data

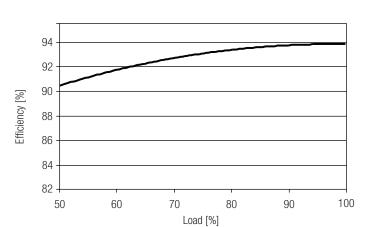
Guarantee conditions at <u>www.tridonic.com</u> → Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

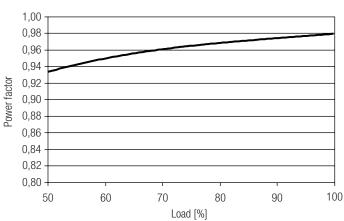
Wiring diagram

Isolation and electric strength testing of luminaires

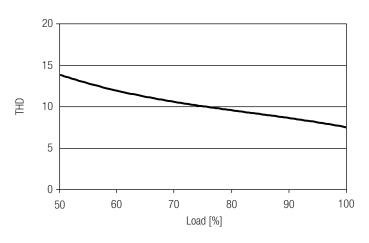
Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

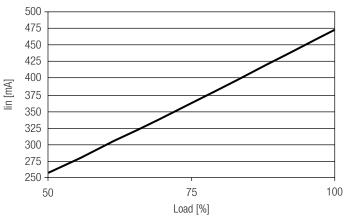

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an isolation test with $500\,V_{DC}$ for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.

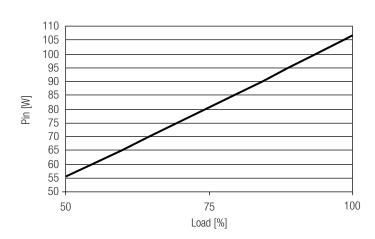
The isolation resistance must be at least $2M\Omega$.


As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with $1500\,V_{\,\text{AC}}$ (or $1.414\,x\,1500\,V_{\,\text{DC}}$). To avoid damage to the electronic devices this test must not be conducted.

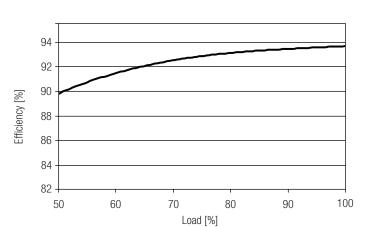
Diagrams LCI 100W 1,400mA TEC C



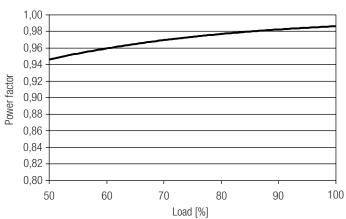

Power factor vs Load


THD vs Load

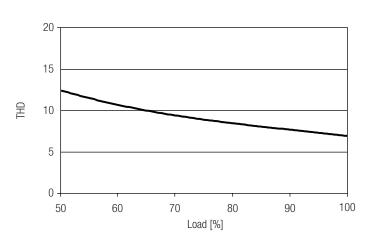
Input current vs load

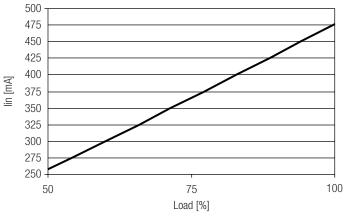


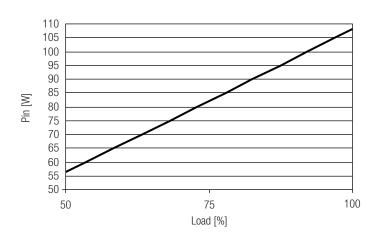
Input power vs load



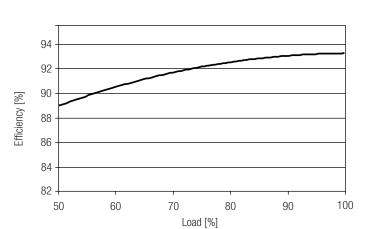
Diagrams LCI 100W 1,750mA TEC C



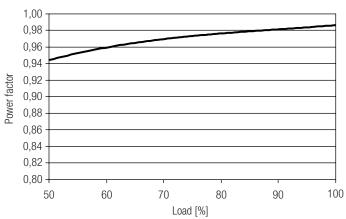

Power factor vs Load


THD vs Load

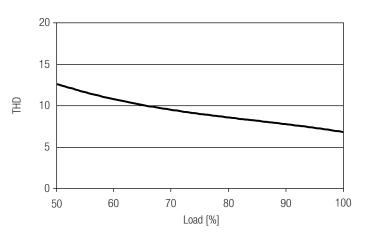
Input current vs load

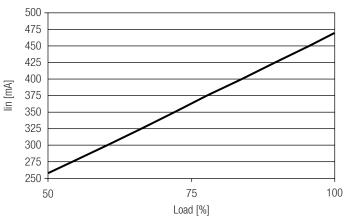


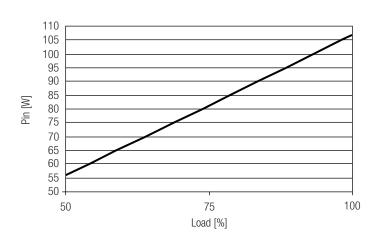
Input power vs load



Diagrams LCI 100W 2,100mA TEC C




Power factor vs Load


THD vs Load

Input current vs load

Input power vs load

